Előrejelzések értékelése
A prognózisok beválásának a mért, illetve megfigyelt adatok alapján történő utólagos meghatározása (a verifikáció) fontos információt jelent az
előrejelzők számára, hiszen egy-egy gyengébben sikerült prognózis okainak felderítése nagyban hozzájárulhat a jövőbeli hasonló típusú hibák
elkerüléséhez. A folyamatos értékelés lehetőséget teremt az elmúlt évekre jellemző trendek meghatározására, akár minden egyes előrejelzett paraméterre
vonatkozóan. Mivel a napjainkban készülő előrejelzések szervesen kötődnek a numerikus időjárás előrejelző modellek produktumaihoz, a prognózisok
verifikálása egyúttal azok hibáira is rávilágít. Az ezzel kapcsolatos esettanulmányok, illetve hosszabb időszakra kiterjedő vizsgálatok rendkívül
hasznos eredményekkel szolgálhatnak a felhasznált modellekről, kijelölhetik azok szükséges továbbfejlesztésének fő irányait. A prognózisok beválásának
értékelése tehát több szempontból lényeges folyamat, amely hozzájárulhat az előrejelzések minőségének fokozatos javulásához.
Időjárás-előrejelző osztály (IEO) Operatív Verifikációs Rendszere
Az IEO Operatív Verifikációs Rendszerét 1999-ben vezettük be. Az elsődleges cél az osztályon naponta készülő operatív rövid- és középtávú alap
előrejelzések automatikus, objektív verifikációja volt. Ez hamarosan kiegészült a prognózisok készítésekor használt két fő numerikus előrejelző
modellnek, az ALADIN-nak és az ECMWF-nek az előrejelzővel azonos módon történő értékelésével. Így meghatározhatóvá vált, hogy az előrejelző mennyit
javít a „nyers” modell előrejelzéseken. A verifikáció folyamatát megkönnyítik az ún. kódszerű előrejelzések, amelyekben minden előrejelzett paraméter
értékét számok formájában adjuk meg (1. ábra).

1. ábra
Példa kódszerű előrejelzésre az előrejelzett elemek listájával
Példa kódszerű előrejelzésre az előrejelzett elemek listájával
Egy ilyen, csupán számokból álló prognózist a tényleges adatok (mérések, megfigyelések) ismeretében igen egyszerűen értékelhetünk.
A bemutatott kódszerű előrejelzések összesen 8 időszakra készülnek, az első nap esetén két részre bontva (éjszaka, ill. nappal), míg a 2-tól a 7. napig
egynapos időszakokra az ország 6 körzetére (2. ábra) vonatkozóan. Ily módon ezek az előrejelzések a meteorológiai paramétereknek mindig az adott
területre érvényes átlagos értékeit tartalmazzák. Az előrejelző manuálisan készíti el a kódokat tartalmazó file-t, míg az említett modellekből,
különféle algoritmusok alkalmazásával ezek automatikusan állnak elő.

2. ábra
Az ország 6 körzete, amelyekre kódszerű előrejelzések készülnek
Az ország 6 körzete, amelyekre kódszerű előrejelzések készülnek
Maga az objektív verifikáció a 6 körzetre vonatkozó "előrejelzett tényleges" értékpárok előállításával veszi kezdetét. Ezekből a későbbiek során a
legkülönfélébb statisztikai mérőszámok határozhatók meg, amelyek közül a legismertebbek: ME átlagos hiba, MAE átlagos abszolút hiba, RMSE
átlagos négyzetes hiba négyzetgyöke, illetve a PC pontos előrejelzések aránya. (egyéb mérőszámok: pl. BIAS, POD, FAR, TS, BS, BSS, stb.)
A jelenleg verifikált elemek a következők: a minimum és maximum hőmérséklet, a csapadékmennyiség/egzisztencia/valószínűség, felhőzetmennyiség, valamint
az átlagszél és a széllökés. A felvázolt rendszer képes arra, hogy ezen elemek előrejelzését külön-külön, objektív módon verifikálja. Ugyanakkor felmerült
annak az igénye is, hogy a prognózisok összteljesítményét egyetlen mérőszámban is megadjuk. Ezt a célt szolgálja az ún. komplex mérőszám, amelyben a
verifikált meteorológiai paraméterek beválását súlyozva vesszük figyelembe. Ehhez minden egyes elemre meghatároztunk egy-egy statisztikai mérőszámot,
illetve kijelöltük azokat a küszöbértékeket, amelyek esetén az adott paraméter beválása 100 illetve 0%-os (3. ábra). A paraméterek előrejelzésének
százalékos beválása a két küszöbérték alapján számítható, majd pedig ezek súlyozott átlagaként a komplex mérőszám is meghatározható.

3. ábra
A verifikált elemekre kijelölt küszöbértékek (baloldalon) és a komplex
mérőszám számításához figyelembe vett súlyok (jobboldalon)
A verifikált elemekre kijelölt küszöbértékek (baloldalon) és a komplex
mérőszám számításához figyelembe vett súlyok (jobboldalon)
A komplex mérőszám bevezetése az objektív verifikációs rendszer egy "szubjektív pontját" jelenti. Ennek ellenére igyekeztünk az említett mérőszámot
oly módon megalkotni, hogy a lehetőségekhez képest minél objektívabban tükrözze vissza az előrejelzések összteljesítményét. Az egyes elemek 0%-os
beválásához rendelt küszöböket például úgy kellett meghatározni, hogy a teljesen sikertelennek számító előrejelzéshez tartozó hiba mértéke nagyjából
megfeleljen egy átlagfelhasználó igényeinek (természetesen az egyes felhasználók igényei nagymértékben eltérhetnek egymástól). A paraméterek közül a
hőmérsékletet vesszük figyelembe legnagyobb súllyal, ugyanis ez az az elem, mely a legobjektívebben verifikálható, és az esetek döntő részében az
összes többi paraméter hatását tükrözi. A komplex mérőszámon belül ugyancsak meglehetősen fontos szerepet kapott a felhőzet, míg az átlagszél beválását
tekintettük a legkevésbé fontosnak.
Eredmények
A felvázolt objektív verifikációs rendszer felhasználásával naponta táblázatos formában automatikusan elkészül az elmúlt napra vonatkozó rövidtávú és az
elmúlt 6 napra vonatkozó középtávú előrejelzések kiértékelése (4. ábra). A rövidtávú előrejelzés esetén körzetenként részletezve, a középtávú
prognózisnál országos átlagban vannak feltüntetve az egyes elemekre vonatkozó előrejelzési hibák mind az előrejelzőre, mind a két fő modellre
vonatkozóan. Ily módon az előrejelzők azonnal szembesülhetnek prognózisuk sikerességével, illetve azzal, hogy mennyit sikerült javítani a modellekből
készülő automatikus előrejelzésekhez képest mind elemenként, mind pedig összességében.
![]() |
![]() |
---|---|
4/a., 4/b.
ábra Rövidtávú (baloldalon) és középtávú (jobboldalon) verifikációs tábla |
Ezek az információk igen hasznosak abból a szempontból is, hogy gyors áttekintést nyerhetünk az elmúlt napokra jellemző modell hibákról, mely az
aktuális előrejelzés készítése során gyakran előnyös lehet. Ha pl. a modell nyári anticiklonális helyzetben már napok óta átlagosan 2-3 fokkal
alábecsülte a maximum hőmérsékletet (4. ábra), akkor ez a hiba nagy valószínűség szerint a következő napokra is jellemző lesz, amennyiben
jelentősen nem változik az időjárási helyzet.
Az előrejelzések beválásának naponkénti követése mellett ugyancsak hasznos lehet a verifikációs eredmények hosszabb időszakokra vonatkozó feldolgozása.
Ez alapján könnyen meghatározhatók az előrejelzések évszakonként akár ellentétes előjelű szisztematikus hibái, és kijelölhetők azok a területek is, ahol
hibák fokozottan jelentkeznek. A komplex mérőszám 2012-re vonatkozó értékei alapján (5. ábra) megállapítható, hogy a prognózisok átlagos
beválása a várakozásoknak megfelelően az időtáv növekedésével fokozatosan csökken.

5. ábra
A komplex mérőszám alakulása 2012-ben az előrejelzőre és az
ECMWF modellre vonatkozóan az elsőtől a hatodik napig
A komplex mérőszám alakulása 2012-ben az előrejelzőre és az
ECMWF modellre vonatkozóan az elsőtől a hatodik napig
Míg pl. az első napra átlagosan 82-84%-os prognózisok készültek, addig a 6. napra ez az érték alig haladja meg a 70%-ot. Az előrejelző éves átlagban
3-4%-ot tudott javítani a modellből készülő automatikus előrejelzésen. Az átlagos javítás mértéke a 3. napig kissé csökken, majd ismét növekedés
látható a hosszabb időtávok felé haladva. Ennek oka abban keresendő, hogy a determinisztikus ECMWF modellen kívül az előrejelző az ún. ECMWF EPS-t,
illetve más modelleket is felhasznál, és ezen többletinformációk birtokában dönt arról, hogy milyen irányban és milyen mértékben módosítja a
determinisztikus ECMWF előrejelzést. Vizsgálatok szerint az említett ensemble előrejelzések egyébként pont a 3-4. naptól kezdődően jobb beválásúak a
determinisztikus modelltől.
Ha az előrejelző összteljesítményét naponként összehasonlítjuk a használt két fő modell beválásával, akkor érdekes éves menetet kapunk (6. ábra).

6. ábra
Az előrejelző naponkénti javítása a modell előrejelzéseken (az ECMWF-hez és az ALADIN-hoz
viszonyított javítás átlaga, pozitív érték: javítás, negatív érték: rontás) az 1. napra vonatkozóan
2012-ben, illetve a görbére illesztett 14-napos mozgó átlag
Az előrejelző naponkénti javítása a modell előrejelzéseken (az ECMWF-hez és az ALADIN-hoz
viszonyított javítás átlaga, pozitív érték: javítás, negatív érték: rontás) az 1. napra vonatkozóan
2012-ben, illetve a görbére illesztett 14-napos mozgó átlag
2012-ben az 1. napra vonatkozóan a javítások mellett viszonylag jelentős számú olyan eset is előfordult, amikor az előrejelző rontott a modellekhez
képest. Áprilistól szeptember végéig ugyanakkor a javítás mértéke jelentősnek mondható, átlagosan 5% és 10% közötti értékkel. Ha alaposabban
megvizsgáljuk ezt az időszakot, akkor megállapítható, hogy ekkor a modell előrejelzések főként a hőmérséklet tekintetében szisztematikus hibával
terheltek: a minimum hőmérsékletet általában felülbecslik, míg a maximum hőmérsékletet alulbecslik. Az előrejelző ismerve a modellek általános
viselkedését ebben az időszakban az eredmények szerint jelentősen korrigálni tudta az említett hibát. Az ősz folyamán aztán fokozatosan csökkent
a javítás mértéke, és november végére, december elejére csupán 1-2%-ra zsugorodott.
Az elmúlt éveket áttekintve feltűnő, hogy főleg a modellek esetén hónapról-hónapra igen nagy változékonyság jellemző (7. ábra). Az előrejelző
összteljesítménye az első napra általában jól követi a két felhasznált fő modell beválásának átlagát, azaz ha rosszabbul teljesítenek a modellek, akkor
többnyire az előrejelző által készített prognózisok beválása is csökken. Az illesztett lineáris trend szerint az elmúlt években folyamatos fejlődés
tapasztalható.

7. ábra
A komplex mérőszám havi értékei az 1. napra 2000-től 2012-ig az előrejelzőre
és a modellek átlagára (ECMWF és ALADIN) vonatkozóan
A komplex mérőszám havi értékei az 1. napra 2000-től 2012-ig az előrejelzőre
és a modellek átlagára (ECMWF és ALADIN) vonatkozóan
Az egyes elemekre vonatkozó 2012-es eredményeket mutatja be a 8. ábra.

8. ábra
Az egyes elemek előrejelzései hibáinak alakulása 2012-ben az előrejelzőre és az
ECMWF-re vonatkozóan az elsőtől a hatodik napig
(MAE átlagos abszolút hiba, PC pontos előrejelzések aránya)
Az egyes elemek előrejelzései hibáinak alakulása 2012-ben az előrejelzőre és az
ECMWF-re vonatkozóan az elsőtől a hatodik napig
(MAE átlagos abszolút hiba, PC pontos előrejelzések aránya)
A fentiekből is nyilvánvaló, hogy előrejelzéseink beválásának javulását döntő mértékben az egyre megbízhatóbb modelleknek köszönhetjük. A sikeres
előrejelzésekben azonban más tényezők, így a meteorológus szakemberek ismereteinek bővülése és a technikai fejlődés is szerepet játszik. Az elmúlt
évtizedekben az előrejelzés munkafolyamatainak jelentős részét sikerült automatizálni. Ennek keretében a hagyományos szinoptikus térképek előállítását
teljes mértékben, analizálását 90%-ban automatizáltuk. A szolgáltatások terén ugyancsak jelentős előrelépés következett be. Míg néhány évtizeddel
ezelőtt bár a mostaninál lényegesen kevesebb és kisebb tartalommal bíró megrendeléssel rendelkeztünk a szerződéses anyagokat egyenként,
külön legépelve készítettük, addig ma a médiás szolgáltatásokat nem számítva a szerződések kb. 50%-a teljesen automatikusan kerül el a
megrendelőkhöz, és a fennmaradók jelentős része is csak kisebb szinoptikusi beavatkozást igényel. Az automatizálásnak köszönhetően a meteorológusnak a
korábbinál több ideje és energiája marad a szakmai munkára. Ez, továbbá az, hogy a megjelenítő rendszerek fejlesztése révén sokkal több, a korábbiaknál
összetettebb mezők, ábrák segítik a légkörben lejátszódó és a modellek által prognosztizált folyamatok megértését, pozitívan hat az előrejelzések
minőségére, beválására.